RSL genes are sufficient for rhizoid system development in early diverging land plants

Author:

Jang Geupil12,Yi Keke23,Pires Nuno D.12,Menand Benoît24,Dolan Liam12

Affiliation:

1. Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK

2. Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK

3. Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

4. Laboratoire de Génétique et Biophysique des Plantes iBEB, CNRS, CEA, Aix-Marseille Université, Marseille, F-13009, France

Abstract

Land plants are anchored to their substratum from which essential inorganic nutrients are taken up. These functions are carried out by a system of rhizoids in early diverging groups of land plants, such as mosses, liverworts and hornworts. Physcomitrella patens RHD SIX-LIKE1 (PpRSL1) and PpRSL2 transcription factors are necessary for rhizoid development in mosses. Similar proteins, AtRHD6 and AtRSL1, control the development of root hairs in Arabidopsis thaliana. Auxin positively regulates root hair development independently of AtRHD6 and AtRSL1 in A. thaliana but the regulatory interactions between auxin and PpRSL1 and PpRSL2 are unknown. We show here that co-expression of PpRSL1 and PpRSL2 is sufficient for the development of the rhizoid system in the moss P. patens; constitutive expression of PpRSL1 and PpRSL2 converts developing leafy shoot axes (gametophores) into rhizoids. During wild-type development, PpRSL1 and PpRSL2 are expressed in the specialized cells that develop rhizoids, indicating that cell-specific expression of PpRSL1 and PpRSL2 is sufficient to promote rhizoid differentiation during wild-type P. patens development. In contrast to A. thaliana, auxin promotes rhizoid development by positively regulating PpRSL1 and PpRSL2 activity in P. patens. This indicates that even though the same genes control the development of root hairs and rhizoids, the regulation of this transcriptional network by auxin is different in these two species. This suggests that auxin might have controlled the development of the first land plant soil anchoring systems that evolved 465 million years ago by regulating the expression of RSL genes and that this regulatory network has changed since mosses and angiosperms last shared a common ancestor.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3