The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth

Author:

Grandjean Valérie12,Gounon Pierre3,Wagner Nicole45,Martin Luc12,Wagner Kay D.45,Bernex Florence6,Cuzin François12,Rassoulzadegan Minoo12

Affiliation:

1. Inserm U636, F-06108 Nice, France.

2. Université de Nice-Sophia Antipolis, Laboratoire de Génétique du Développement Normal et Pathologique,F-06108 Nice, France.

3. Centre Commun de Microscopie Appliquée, Université de Nice-Sophia Antipolis, F-06108 Nice, France.

4. Inserm-Avenir U907, F-06107 Nice, France.

5. Faculté de Médecine, Université de Nice-Sophia Antipolis,F-06107 Nice, France.

6. Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire d'Alfort, F-94704 Maisons-Alfort, France.

Abstract

The size of the mammalian body is determined by genetic and environmental factors differentially modulating pre- and postnatal growth. We now report a control of growth acting in the mouse from the first cleavages to the postnatal stages. It was evidenced by a hereditary epigenetic modification(paramutation) created by injection of a miR-124 microRNA into fertilized eggs. From the blastocyst to the adult, mouse pups born after microinjection of this miRNA showed a 30% increase in size. At the blastocyst stage, frequent duplication of the inner cell mass resulted in twin pregnancies. A role of sperm RNA as a transgenerational signal was confirmed by the giant phenotype of the progeny of transgenic males expressing miR-124 during spermiogenesis. In E2.5 to E8.5 embryos, increased levels of several transcripts with sequence homology to the microRNA were noted, including those of Sox9, a gene known for its crucial role in the progenitors of several adult tissues. A role in embryonic growth was confirmed by the large size of embryos expressing a Sox9 DNA transgene. Increased expression in the paramutants was not related to a change in miR-124 expression,but to the establishment of a distinct, heritable chromatin structure in the promoter region of Sox9. While the heritability of body size is not readily accounted for by Mendelian genetics, our results suggest the alternate model of RNA-mediated heritable epigenetic modifications.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3