The effects of 8 weeks voluntary wheel running on the contractile performance of isolated locomotory (soleus) and respiratory (diaphragm) skeletal muscle during early ageing

Author:

Tallis Jason1ORCID,Higgins Matthew F.2,Seebacher Frank3,Cox Val M.1,Duncan Michael J.1,James Rob S.1

Affiliation:

1. School of Life Sciences, James Starley Building, Coventry University, Priory Street, Coventry CV1 5FB, UK

2. Department of Sport, Outdoor and Exercise Science, Derby University, Kedleston Road, Derby, DE22 1GB, UK

3. School of Biological Sciences, A08 University of Sydney, Science Road, Sydney, NSW, 2006, Australia

Abstract

Decreased skeletal muscle performance with increasing age is strongly associated with reduced mobility and quality of life. Increased physical activity is a widely prescribed method of reducing the detrimental effects of ageing on skeletal muscle contractility. The present study uses isometric and work loop testing protocols to uniquely investigate the effects of 8 weeks of voluntary wheel running on the contractile performance of isolated dynapenic soleus and diaphragm muscles of 38 week old CD1 mice. When compared to untrained controls, voluntary wheel running induced significant improvements in maximal isometric stress and work loop power, a reduced resistance to fatigue, but greater cumulative work during fatiguing work loop contractions in isolated muscle. These differences occurred without appreciable changes in LDH, CS, SERCA or MHC expression synonymous with this form of training in younger rodent models. Despite the given improvement in contractile performance, the average running distance significantly declined over the course of the training period, indicating that this form of training may not be sufficient to fully counteract the longer term ageing induced decline in skeletal muscle contractile performance. Although these results indicate that regular low intensity physical activity may be beneficial in offsetting the age-related decline in skeletal muscle contractility, the present findings infer that future work focusing on the maintenance of a healthy body mass with increasing age and its effects on myosin-actin cross bridge kinetics and Ca2+ handling, is needed to clarify the mechanisms causing the improved contractile performance in trained dynapenic skeletal muscle.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3