The sequences appended to the amyloid core region of the HET-s prion protein determine higher-order aggregate organization in vivo
Author:
Balguerie Axelle1, Dos Reis Suzana1, Coulary-Salin Bénédicte1, Chaignepain Stéphane12, Sabourin Martine1, Schmitter Jean-Marie12, Saupe Sven J.1
Affiliation:
1. Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS/Université de Bordeaux 2, 1 rue Camille St Saëns, 33077 Bordeaux, France 2. Institut Européen de Chimie et Biologie CNRS FRE 2247 16, Avenue Pey Berland 33607 Pessac Cedex, France
Abstract
The [Het-s] prion of the fungus Podospora anserina propagates as a self-perpetuating amyloid form of the HET-s protein. This protein triggers a cell death reaction termed heterokaryon incompatibility when interacting with the HET-S protein, an allelic variant of HET-s. HET-s displays two distinct domains, a N-terminal globular domain and a C-terminal unstructured prion-forming domain (residues 218-289). Here, we describe the characterization of HET-s(157-289), a truncated form of HET-s bearing an extensive deletion in the globular domain but retaining full activity in incompatibility and prion propagation. In vitro, HET-s(157-289) polymerizes into amyloid fibers displaying the same core region as full-length HET-s fibers. We have shown previously that fusions of green fluorescent protein (GFP) with HET-s or HET-s(218-289) form dot-like aggregates in vivo upon transition to the prion state. By contrast, a HET-s(157-289)/GFP fusion protein forms elongated fibrillar aggregates in vivo. Such elongated aggregates can reach up to 150 μm in length. The in vivo dynamics of these organized structures is analysed by time lapse microscopy. We find that the large elongate structures grow by lateral association of shorter fibrillar aggregates. When co-expressed with HET-s(157-289), full-length HET-s and HET-s(218-289) can be incorporated into such elongated aggregates. Together, our data indicate that HET-s(157-289) aggregates can adopt an organized higher-order structure in vivo and that the ability to adopt this supramolecular organization is conferred by the sequences appended to the amyloid core region.
Publisher
The Company of Biologists
Reference29 articles.
1. Balguerie, A., Dos Reis, S., Ritter, C., Chaignepain, S., Coulary-Salin, B.,
Forge, V., Bathany, K., Lascu, I., Schmitter, J. M., Riek, R. et al. (2003). Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina.EMBO J.22, 2071-2081. 2. Baxa, U., Speransky, V., Steven, A. C. and Wickner, R. B. (2002). Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc. Natl. Acad. Sci. USA99, 5253-5260. 3. Baxa, U., Taylor, K. L., Wall, J. S., Simon, M. N., Cheng, N., Wickner, R.
B. and Steven, A. C. (2003). Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber. J. Biol. Chem. 278, 43717-43727. 4. Beisson-Schecroun, J. (1962). Incompatibilité cellulaire et interactions nucléocytoplamsiques dans les phénomènes de barrage chez le Podospora anserina.Ann. Genet.4, 3-50. 5. Bergès, T. and Barreau, C. (1989). Heat-shock at elevated temperature improves transformation efficiency of protoplats from Podospora anserina.J. Gen. Microbiol.135, 601-604.
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|