Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species

Author:

Chen Yongqiang1,McMillan-Ward Eileen1,Kong Jiming2,Israels Sara J.13,Gibson Spencer B.14

Affiliation:

1. Manitoba Institute of Cell Biology, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9, Canada

2. Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada

3. CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada

4. Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

Autophagy is a self-digestion process important for cell survival during starvation. It has also been described as a form of programmed cell death. Mitochondria are important regulators of autophagy-induced cell death and damaged mitochondria are often degraded by autophagosomes. Inhibition of the mitochondrial electron transport chain (mETC) induces cell death through generating reactive oxygen species (ROS). The role of mETC inhibitors in autophagy-induced cell death is unknown. Herein, we determined that inhibitors of complex I (rotenone) and complex II (TTFA) induce cell death and autophagy in the transformed cell line HEK 293, and in cancer cell lines U87 and HeLa. Blocking the expression of autophagic genes (beclin 1 and ATG5) by siRNAs or using the autophagy inhibitor 3-methyladenine (3-MA) decreased cell death that was induced by rotenone or TTFA. Rotenone and TTFA induce ROS production, and the ROS scavenger tiron decreased autophagy and cell death induced by rotenone and TTFA. Overexpression of manganese-superoxide dismutase (SOD2) in HeLa cells decreased autophagy and cell death induced by rotenone and TTFA. Furthermore, blocking SOD2 expression by siRNA in HeLa cells increased ROS generation, autophagy and cell death induced by rotenone and TTFA. Rotenone- and TTFA-induced ROS generation was not affected by 3-MA, or by beclin 1 and ATG5 siRNAs. By contrast, treatment of non-transformed primary mouse astrocytes with rotenone or TTFA failed to significantly increase levels of ROS or autophagy. These results indicate that targeting mETC complex I and II selectively induces autophagic cell death through a ROS-mediated mechanism.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 390 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3