Author:
Lowndes Molly,Rakshit Sabyasachi,Shafraz Omer,Borghi Nicolas,Harmon Robert,Green Kathleen,Sivasankar Sanjeevi,Nelson W. James
Abstract
Adhesion between cells is established by the formation of specialized intercellular junctional complexes, such as desmosomes. Desmosomes comprise two members of the cadherin superfamily of cell adhesion proteins, desmocollin (Dsc) and desmoglein (Dsg), but their combinatorial roles in desmosome assembly is not understood. To uncouple desmosome assembly from other cell-cell adhesion complexes, we used micro-patterned substrates of Dsc2aFc and/or Dsg2Fc and collagen IV; we show that Dsc2aFc, but not Dsg2Fc, was necessary and sufficient to recruit desmosome-specific desmoplakin into desmosome puncta and produce strong adhesive binding. Single Molecule Force Spectroscopy showed that monomeric Dsc2a, but not Dsg2, formed Ca2+-dependent homophilic bonds, and that Dsg2 formed Ca2+-independent heterophilic bonds with Dsc2a. A W2A mutation in Dsc2a inhibited Ca2+-dependent homophilic binding, similar to classical cadherins, and Dsc2aW2A, but not Dsg2W2A, was excluded from desmosomes in MDCK cells. These results indicate that Dsc2a, not Dsg2, is required for desmosome assembly via homophilic Ca2+- and W2/strand swap-dependent binding, and that Dsg2 may be involved later in regulating a switch to Ca2+-independent adhesion in mature desmosomes.
Publisher
The Company of Biologists
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献