Physiological responses of wild zebra finches (Taeniopygia guttata) to heatwaves

Author:

Cooper Christine Elizabeth12ORCID,Hurley Laura Leilani2,Deviche Pierre3,Griffith Simon Charles2

Affiliation:

1. School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia

2. Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia

3. School of Life Sciences, Arizona State University, Arizona, USA

Abstract

Desert birds inhabit hot, dry environments that are becoming hotter and drier as a consequence of climate change. Extreme weather such as heatwaves can cause mass-mortality events that may significantly impact populations and species. There are currently insufficient data concerning physiological plasticity to inform models of species’ response to extreme events and develop mitigation strategies. Consequently, we examine here the physiological plasticity of a small desert bird in response to hot (mean maximum ambient temperature=42.7°C) and cooler (mean maximum ambient temperature=31.4°C) periods during a single Austral summer. We measured body mass, metabolic rate, evaporative water loss, and body temperature, along with blood parameters (corticosterone, glucose, and uric acid) of wild zebra finches (Taeniopygia guttata; Gould 1837) to assess their physiological state and determine the mechanisms by which they respond to heatwaves. Hot days were not significant stressors; they did not result in modification of baseline blood parameters or an inability to maintain body mass, provided drinking water was available. During heatwaves, finches shifted their thermoneutral zone to higher temperatures. They reduced metabolic heat production, evaporative water loss and wet thermal conductance, and increased hyperthermia, especially when exposed to high ambient temperature. A consideration of the significant physiological plasticity that we have demonstrated to achieve more favourable heat and water balance is essential for effectively modelling and planning for the impacts of climate change on biodiversity.

Funder

ok

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3