Peripherin assembles into homopolymers in SW13 cells

Author:

Cui C.1,Stambrook P.J.1,Parysek L.M.1

Affiliation:

1. Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, OH 45267-0521, USA.

Abstract

The properties of full-length and mutant peripherins were studied in intermediate filament-less SW13 cells to define regions of peripherin that are essential for initiation of filament assembly. A full-length rat peripherin gene transfected into SW13 cells resulted in filament formation, consistent with the close structural relationship of peripherin to other type III intermediate filament proteins that readily form homopolymers. Translation of full-length rat peripherin is initiated predominantly at the second of two inframe AUGs. Deletions within the amino terminus of wild-type peripherin abolished its ability to form filaments in SW13 cells. In contrast, deletion of the entire carboxyl-terminal tail of peripherin did not affect its ability to form filamentous arrays in transfected SW13 cells. These results indicate that, of the intermediate filament proteins that are expressed in mature neurons, only peripherin and alpha-internexin are capable of making homopolymer intermediate filaments. In addition, mutations of the carboxyl tail of peripherin generally do not interfere with filament network formation.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neurofilaments: Novel findings and future challenges;Current Opinion in Cell Biology;2024-04

2. Neurofilaments in health and Charcot-Marie-Tooth disease;Frontiers in Cell and Developmental Biology;2023-12-18

3. Peripherin partially localizes in Bunina bodies in amyotrophic lateral sclerosis;Journal of the Neurological Sciences;2011-03

4. Peripherin Pathology;Advances in Neurobiology;2010-12-02

5. Distinct biochemical signatures characterize peripherin isoform expression in both traumatic neuronal injury and motor neuron disease;Journal of Neurochemistry;2010-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3