Affiliation:
1. Departement de Biologie Supramoleculaire et Cellulaire, Universite Paris VII, France.
Abstract
Mechanisms by which motor innervation induces postsynaptic membrane differentiation and functional compartmentalization of the subneural sarcoplasm in skeletal muscle fibres are still poorly understood. However, transmembrane control of cytoskeletal activities by the nerve terminal may be considered. Here, we examine several properties of a 54 kDa protein, previously identified in the postsynaptic membrane of the Torpedo marmorata electrocyte with anti-lamin B antibodies, in order to study its role in the assembly of the subneural intermediate filament meshwork. Using a ligand blot assay, we show that this protein binds desmin, a type III intermediate filaments protein, at micromolar concentrations. Moreover, purified acetylcholine receptor-rich membrane fragments are able to generate arrays of desmin filaments in vitro. Immunofluorescence experiments indicate that the 54 kDa protein becomes associated with the acetylcholine receptor-rich membrane at an early stage of development of the electrocyte, and that a polarized desmin network develops concomitantly from the postsynaptic membrane. Taken together, these data show that, like karyoskeletal lamin B, the 54 kDa protein is involved in the organization of the subneural intermediate filament meshwork. Control of the assembly of the subneural cytoskeleton by components of the postsynaptic membrane may thus be a prerequisite for the functional compartmentalization of the muscle fibre triggered by motor innervation.
Publisher
The Company of Biologists
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献