The state of actin assembly regulates actin and vinculin expression by a feedback loop

Author:

Bershadsky A.D.1,Gluck U.1,Denisenko O.N.1,Sklyarova T.V.1,Spector I.1,Ben-Ze'ev A.1

Affiliation:

1. Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel.

Abstract

Actin filaments are major determinants of cell shape, motility and adhesion, which control important biological processes including embryonic development and wound healing. These processes are associated with changes in actin assembly, which is regulated by controlling the balance between polymerized and non-polymerized actin. To maintain a significant pool of non-polymerized actin, mechanism(s) linking actin synthesis to its state of polymerization were proposed. We have studied this relationship between actin synthesis and organization by modulating actin assembly using different drugs. Unassembled actin was increased in 3T3 cells using either the Clostridium botulinum C2 toxin, which ADP-ribosylates actin, or by latrunculin A, a Red Sea sponge product, which binds monomeric actin. The synthesis of actin was dramatically reduced in these cells owing to a concomitant decrease in actin RNA level. Similar results were obtained with HeLa cells grown in both monolayer and in suspension, suggesting that cell shape changes associated with drug treatment are not the primary cause for the effect on actin synthesis. In contrast, the scrape-loading of 3T3 cells with phalloidin, a stabilizer of polymerized actin that increased the level of assembled actin, resulted in elevated actin synthesis and RNA content. The expression of vinculin, a major component of adhesion plaques and cell-cell junctions, which is involved in actin-membrane associations, was altered in parallel with that of actin in cells treated with these drugs. The decrease in actin RNA resulted from destabilization of actin mRNA in cells where unassembled actin level was elevated. This is suggested by the unchanged transcription of actin in isolated nuclei from drug-treated cells, and by demonstrating that actin mRNA was degraded faster in cells after C2 toxin treatment than in control cells. This feedback control mechanism is mainly confined to the cytoplasm, as it remained active in enucleated cells. The results suggest the existence of an autoregulatory pathway for the expression of actin and other microfilament-associated proteins which is linked to the state of actin polymerization in the cell.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3