Ligand-stimulated beta 2-adrenergic receptor internalization via the constitutive endocytic pathway into rab5-containing endosomes

Author:

Moore R.H.1,Sadovnikoff N.1,Hoffenberg S.1,Liu S.1,Woodford P.1,Angelides K.1,Trial J.A.1,Carsrud N.D.1,Dickey B.F.1,Knoll B.J.1

Affiliation:

1. Department of Pediatrics, Baylor College of Medicine, Houston VA Medical Center, TX 77030, USA.

Abstract

The small GTPase rab5 appears to be rate-limiting for the constitutive internalization of transferrin receptor and for fluid-phase endocytosis. However, it is unknown whether rab5 regulates receptors whose internalization is stimulated by the binding of ligand, and whether such receptors change the underlying rate of the endocytic pathways they utilize. As a model for ligand-stimulated endocytosis, we used transfected HEK293 cells expressing high levels of an epitope-tagged human beta 2-adrenergic receptor. Nearly all receptors were on the cell surface in the absence of agonist, but within ten minutes of agonist addition > 50% of receptors internalized and colocalized extensively with rab5. Hypertonic sucrose blocked beta 2-adrenergic receptor internalization, as well as that of transferrin receptor, suggesting a clathrin-mediated process. In contrast, an inhibitor of potocytosis had little effect upon beta 2-adrenergic receptor internalization, suggesting that this process did not require active caveolae. Consistent with this finding, caveolin was not detectable in the 12 beta 6 line, as assessed by western blotting with a polyclonal anti-caveolin antibody. Stimulated receptor internalization did not affect the rate or capacity of the constitutive endocytic pathway since there was no detectable increase in fluid-phase endocytosis after addition of beta-agonist, nor was there a significant change in the amount of surface transferrin receptor. Altogether, these data suggest that beta 2-adrenergic receptors internalize by a clathrin-mediated and rab5-regulated constitutive endocytic pathway. Further, agonist-stimulated receptor internalization has no detectable effect upon the function of this pathway.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3