Multiple mRNAs encode the avian lysosomal membrane protein LAMP-2, resulting in alternative transmembrane and cytoplasmic domains

Author:

Hatem C.L.1,Gough N.R.1,Fambrough D.M.1

Affiliation:

1. Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Abstract

Lysosomal membranes are enriched in extensively glycosylated transmembrane proteins, LAMP-1 and LAMP-2. LAMP-1 proteins have been characterized from several mammalian species and from chickens, but no non-mammalian homologues of LAMP-2 have been described, and no splice variants of either protein have been reported. Here we report the characterization of three cDNA clones encoding chicken LAMP-2. The nucleotide sequences of the cDNAs diverge at their 3′ ends within the open reading frame, resulting in sequences that code for three different transmembrane and cytoplasmic domains. Southern analysis suggests that a single gene encodes the common region of chicken LAMP-2. The position of the divergence and the identity of the common sequence are consistent with alternative splicing of 3′ exons. Analysis of the mRNAs present in adult chicken tissues suggests tissue-specific expression of the three chicken LAMP-2 variants, with LAMP-2b expressed primarily in the brain. The cytoplasmic domain of LAMP-type proteins contains the targeting signal for directing these molecules to the lysosome. Using chimeras consisting of the lumenal domain of chicken LEP100 (a LAMP-1) and the transmembrane and cytoplasmic domains of the LAMP-2 variants, we demonstrate in transfected mouse L cells that all three LAMP-2 carboxyl-terminal regions are capable of targeting the chimeric proteins to lysosomes. Levels of expression, subcellular distribution, and glycosylation of the LAMP proteins have all been shown to change with differentiation in mammalian cells and to be correlated with metastatic potential in certain tumor cell lines. Alternative splicing of the LAMP-2 transcript may play a role in these changes.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3