Synthesis and assembly of human beta 1 gap junctions in BHK cells by DNA transfection with the human beta 1 cDNA

Author:

Kumar N.M.1,Friend D.S.1,Gilula N.B.1

Affiliation:

1. Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA.

Abstract

Gap junctional communication is important in many physiological processes, including growth control, patterning, and the synchronization of cell-to-cell activities. It has been difficult to study the synthesis and assembly of gap junctions due to their low abundance. To overcome this limitation, baby hamster kidney cells (BHK) have been transfected with a human beta 1 (Cx32) connexin cDNA construct. Expression was placed under the control of the mouse metallothionein promoter that can be induced by heavy metals. The transfected cells were characterized by DNA, RNA and protein analysis, as well as by scrape loading to detect functional channels. Functional beta 1 connexin was detected only in cells transfected with beta 1 connexin cDNA in the correct orientation (beta 1-BHK). Analysis of the cells by light microscopic immunocytochemistry indicated that beta 1 connexin antigen was localized to the plasma membrane and to several intracellular compartments. Characterization with thin section electron microscopy revealed extensive areas of assembled double membrane gap junctions between cells (on the cell surface), in the endoplasmic reticulum (ER), and the nuclear envelope. This unusual intracellular distribution for assembled gap junction protein was confirmed by freeze fracture analysis, which revealed large particle aggregates, characteristic of gap junction plaques, on the fracture faces of all these membranes. The presence of gap junction particle aggregates in the ER suggests that the oligomerization of connexin can occur at its site of synthesis. Further, the process of assembly into double membrane junction structures in intracellular membranes may be driven by connexin protein concentration.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3