Expression and glycosylation of the filamentous brush border glycocalyx (FBBG) during rabbit enterocyte differentiation along the crypt-villus axis

Author:

Maury J.1,Bernadac A.1,Rigal A.1,Maroux S.1

Affiliation:

1. Laboratoire de Biochimie et Biologie de la Nutrition, CNRS-URA 1820, Faculte des Sciences de Saint Jeroome, Marseille, France.

Abstract

The filamentous brush border glycocalyx forming the ‘enteric surface coat’ of the intestinal epithelium is composed in rabbits of a 400 kDa mucin-type glycoprotein, which was purified using the 3A4 monoclonal antibody. This monoclonal antibody recognizes a filamentous brush border glycocalyx-specific glycosidic structure containing an O-acetylated sialic acid, which is absent from all the other glycoproteins in the epithelium, with the exception of certain goblet cell mucins. Here we establish that only 50% of the rabbits tested synthesized this glycosidic structure. Upon immunolabeling surface epithelia and sections of jejunum from these rabbits, the carbohydrate epitope recognized by the 3A4 mAb was found to be present on the filamentous brush border glycocalyx of a variable number of enterocytes, which were patchily distributed over all the villi. This heterogeneous expression of 3A4 antigenicity, which was also observed in the crypts, suggests the existence of differences between the patterns of differentiation of enterocytes, which results in the expression of different pools of glycosyltransferases and/or acetyl transferases. In mature enterocytes, the 3A4 determinants were present only on the filamentous brush border glycocalyx, which is anchored solely to the membrane microdomain at the tip of brush border microvilli. However, expression of 3A4 antigenicity begins in the median third of crypts, in enterocytes with a short, thin brush border devoid of apical filamentous brush border glycocalyx. Here the 3A4 epitopes were present over the whole brush border membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3