Affiliation:
1. Molecular and Cellular Biology Program, University of Massachusetts at Amherst 01003, USA.
Abstract
Heat-stable brain microtubule associated proteins (MAPs) and purified microtubule associated protein 2 (MAP-2) were microinjected into cultured BSC-1 cells which had been previously injected with rhodamine-labeled tubulin. The dynamic instability behavior of individual microtubules was then examined using low-light-level fluorescence microscopy and quantitative microtubule tracking methods. Both MAP preparations suppressed microtubule dynamics in vivo, by reducing the average rate and extent of both growing and shortening events. The average duration of growing events was not affected. When measured as events/unit time, heat-stable MAPs and MAP-2 did not significantly alter the frequency of rescue; the frequency of catastrophe was decreased approximately two-fold by heat-stable MAPs and MAP-2. When transition frequencies were calculated as events/unit distance, both MAP preparations increased the frequency of rescue, without altering the frequency of catastrophe. The percentage of total time spent in the phases of growth, shrink and pause was determined. Both MAP-2 and heat-stable MAPs decreased the percentage of time spent shortening, increased the percentage of time spent paused, and had no effect on percentage of time spent growing. Heat-stable MAPs increased the average pause duration, decreased the average number of events per minute per microtubule and increased the probability that a paused microtubule would switch to growing rather than shortening. The results demonstrate that addition of MAPs to living cells reduces the dynamic behavior of individual microtubules primarily by suppressing the magnitude of dynamic events and increasing the time spent in pause, where no change in the microtubule length can be detected. The results further suggest that the expression of MAPs directly contributes to cell type-specific microtubule dynamic behavior.
Publisher
The Company of Biologists
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献