Targeted disruption of the Dictyostelium myosin essential light chain gene produces cells defective in cytokinesis and morphogenesis

Author:

Chen T.L.1,Kowalczyk P.A.1,Ho G.1,Chisholm R.L.1

Affiliation:

1. Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA.

Abstract

We have previously demonstrated that the myosin essential light chain (ELC) is required for myosin function in a Dictyostelium cell line, 7–11, in which the expression of ELC was inhibited by antisense RNA overexpression. We have now disrupted the gene encoding the ELC (mlcE) in Dictyostelium by gene targeting. The mlcE- mutants provide a clean genetic background for phenotypic analysis and biochemical characterization by removing complications arising from the residual ELC present in 7–11 cells, as well as the possibility of mutations due to insertion of the antisense construct at multiple sites in the genome. The mlcE- mutants, when grown in suspension, exhibited the typical multinucleate phenotype observed in both myosin heavy chain mutants and 7–11 cells. This phenotype was rescued by introducing a construct that expressed the wild-type Dictyostelium ELC cDNA. Myosin purified from the mlcE- cells exhibited significant calcium ATPase activity, but the actin-activated ATPase activity was greatly reduced. The results obtained from the mlcE- mutants strengthen our previous conclusion based on the antisense cell line 7–11 that ELC is critical for myosin function. The proper localization of myosin in mlcE- cells suggests that its phenotypic defects primarily arise from defective contractile function of myosin rather than its mislocalization. The enzymatic defect of myosin in mlcE- cells also suggests a possible mechanism for the observed chemotactic defect of mlcE- cells. We have shown that while mlcE- cells were able to respond to chemoattractant with proper directionality, their rate of movement was reduced. During chemotaxis, proper directionality toward chemoattractant may depend primarily on proper localization of myosin, while efficient motility requires contractile function. In addition, we have analyzed the morphogenetic events during the development of mlcE- cells using lacZ reporter constructs expressed from cell type specific promoters. By analyzing the morphogenetic patterns of the two major cell types arising during Dictyostelium development, prespore and prestalk cells, we have shown that the localization of prespore cells is more susceptible to the loss of ELC than prestalk cells, although localization of both cell types is abnormal when developed in chimeras formed by mixing equal numbers of wild-type and mutant cells. These results suggest that the morphogenetic events during Dictyostelium development have different requirements for myosin.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3