Mapping of adherens junction components using microscopic resonance energy transfer imaging

Author:

Kam Z.1,Volberg T.1,Geiger B.1

Affiliation:

1. Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel.

Abstract

Quantitative microscopic imaging of resonance energy transfer (RET) was applied for immunological high resolution proximity mapping of several cytoskeletal components of cell adhesions. To conduct this analysis, a microscopic system was developed, consisting of a highly stable field illuminator, computer-controlled filter wheels for rapid multiple-color imaging and a sensitive, high resolution CCD camera, enabling quantitative data recording and processing. Using this system, we have investigated the spatial inter-relationships and organization of four adhesion-associated proteins, namely vinculin, talin, alpha-actinin and actin. Cultured chick lens cells were double labeled for each of the junctional molecules, using fluorescein- and rhodamine-conjugated antibodies or phalloidin. RET images were acquired with fluorescein excitation and rhodamine emission filter setting, corrected for fluorescein and rhodamine fluorescence, and normalized to the fluorescein image. The results pointed to high local densities of vinculin, talin and F-actin in focal adhesions, manifested by mean RET values of 15%, 12% and 10%, respectively. On the other hand, relatively low values (less than 1%) were observed following double immunofluorescence labeling of the same cells for alpha-actinin. Double indirect labeling for pairs of these four proteins (using fluorophore-conjugated antibodies or phalloidin) resulted in RET values of 5% or lower, except for the pair alpha-actinin and actin, which yielded significantly higher values (13-15%). These results suggest that despite their overlapping staining patterns, at the level of resolution of the light microscope, the plaque proteins vinculin and talin are not homogeneously interspersed at the molecular level but form segregated clusters. alpha-Actinin, on the other hand, does not appear to form such clusters but, rather, closely interacts with actin. We discuss here the conceptual and applicative aspects of RET measurements and the implications of the results on the subcellular molecular organization of adherens-type junctions.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3