Secretion from permeabilised mast cells is enhanced by addition of gelsolin: contrasting effects of endogenous gelsolin

Author:

Borovikov Y.S.1,Norman J.C.1,Price L.S.1,Weeds A.1,Koffer A.1

Affiliation:

1. Institute of Cytology, Russian Academy of Sciences, St. Petersburg.

Abstract

Permeabilised rat mast cells were exposed to gelsolin and its N-terminal half (S1-3), proteins that sever actin filaments in a calcium-dependent and independent manner, respectively. Gelsolin and S1-3 induced a decrease in cellular F-actin content and an increase in the extent of the secretory response. The calcium sensitivities of both these effects were consistent with the differential calcium requirements of the two proteins. Segment 1 (S1), which binds G-actin and caps filaments but does not sever them, did not show these effects. Thus, secretion of mast cells is promoted as a consequence of the severing activity of exogenous gelsolin or S1-3. Most of the endogenous gelsolin remained within permeabilised, washed mast cells and its distribution in resting state was predominantly cortical. Addition of calcium in the absence of MgATP did not reduce the F-actin content; by contrast, calcium with MgATP induced F-actin loss that was unaffected by the presence of anti-gelsolin. Because this antibody inhibits the severing activity of gelsolin, these results indicate that in permeabilised mast cells the severing activity of the remaining endogenous gelsolin is not involved in cortical actin filaments disassembly. Upon exposure to GTP-gamma-S in the absence of calcium, the content of cortical gelsolin was reduced. This parallels our previous observation of a GTP-gamma-S induced reduction of cortical actin filaments followed by their relocation to the cell's interior (Norman et al. (1994) J. Cell Biol. 126, 1005–1015) and suggests that actin redistribution may be a consequence of dissociation of gelsolin caps brought about by activation of a GTP-binding protein.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3