Motility and substratum adhesion of Dictyostelium wild-type and cytoskeletal mutant cells: a study by RICM/bright-field double-view image analysis

Author:

Weber I.1,Wallraff E.1,Albrecht R.1,Gerisch G.1

Affiliation:

1. Max-Planck-Institut fur Biochemie, Martinsried, Germany.

Abstract

To investigate the dynamics of cell-substratum adhesion during locomotion, a double-view optical technique and computer-assisted image analysis has been developed which combines reflection interference contrast microscopy (RICM) with bright-field imaging. The simultaneous recording of cell-substratum contact and cell body contour has been applied to aggregation-competent cells of Dictyostelium discoideum. These cells are distinguished from cells at earlier stages of development by small areas of contact to a substratum. Three questions have been addressed in analysing the locomotion of aggregation-competent cells. (1) What is the relationship between changes in the shape of cells and their contact to a substratum during a chemotactic response? (2) What is the relationship between protrusion and retraction of the cell body, and between local attachment and detachment? (3) Are there differences between wild-type and mutant cells that lack certain cytoskeletal proteins? During a chemotactic response the front region of the amoeba can bend towards the gradient of attractant without being supported by its contact with a surface, which excludes the necessity for gradients of adhesion for the response. The finding that in locomoting cells protrusion of the leading edge often precedes retraction establishes a pioneer role for the front region. The finding that gain of contact area precedes loss provides evidence for the coordination of interactions between the cell surface and a substratum. For comparison with wild-type, aggregation-competent triple mutant cells have been used that lack two F-actin crosslinking proteins, alpha-actinin and 120 kDa gelation factor, and an actin filament fragmenting protein, severin. Disturbances in the spatial and temporal control of cytoskeletal activities have been unravelled in the mutant by RICM and quantified by cross-correlation analysis of attachment and detachment vectors. In order to detect these disturbances, it was essential to analyse cell locomotion on the weakly adhesive surface of freshly cleaved mica.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3