Characterization of moesin in the sea urchin Lytechinus variegatus: redistribution to the plasma membrane following fertilization is inhibited by cytochalasin B

Author:

Bachman E.S.1,McClay D.R.1

Affiliation:

1. Duke University, Durham, NC 27708, USA.

Abstract

We have investigated the distribution and function of an ezrin-radixin-moesin-like (ERM) molecule in the sea urchin. A sea urchin homologue of moesin was cloned that shares 75% amino acid similarity in the conserved N-terminal region to other moesin molecules. A 6.3 kb message is transcribed late in embryogenesis and is present in adult tissues. Polyclonal antibodies were generated to proteins expressed by a bacterial expression vector, and affinity purified. These antibodies recognize a single 75 kDa protein that is present throughout development in approximately equal abundance, and specifically they immuno-precipitate a single protein. We show by immunolocalization that SUmoesin has two predominant patterns during development. First, SUmoesin is rapidly redistributed after fertilization from a location throughout the egg cytoplasm to a location in the egg cortex. Later in embryogenesis, SUmoesin is localized to the apical ends of cells in the regions of cell-cell junctions. We show that SUmoesin is present in actin-rich regions of the embryo. Finally, we show that the location of SUmoesin requires an intact actin-based cytoskeleton. SUmoesin fails to localize to the plasma membrane after fertilization in the presence of cytochalasin B. Furthermore, SUmoesin loses its apical position in the region of cell-cell junctions in the presence of cytochalasin B in later stages of embryogenesis. This effect is reversible, and the microtubule inhibitor colchicine has no effect. These results show that SUmoesin becomes associated with apical plasma membrane structures early in development, and that SUmoesin is both coincident with actin and requires the assembly of actin filaments to maintain its localization.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3