Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues

Author:

Frigeri A.1,Gropper M.A.1,Umenishi F.1,Kawashima M.1,Brown D.1,Verkman A.S.1

Affiliation:

1. Department of Medicine, University of California, San Francisco 94143-0521, USA.

Abstract

It was shown recently that water channel homologs MIWC (mercurial insensitive water channel) and GLIP (glycerol intrinsic protein) colocalized in basolateral membranes of kidney collecting duct, tracheal and colonic epithelia, and in brain pia mater. We report here an extensive immunolocalization study of MIWC and GLIP in non-epithelial and glandular epithelial tissues in rat. Immunogold electron microscopy confirmed colocalization of MIWC and GLIP in basolateral membrane of principal cells in kidney collecting duct. However, in other epithelia, MIWC but not GLIP was expressed in basolateral membrane of parietal cells in stomach, and in excretory tubules of salivary and lacrimal glands; GLIP but not MIWC was expressed in transitional epithelium of urinary bladder and skin epidermis. In the central nervous system, MIWC was strongly expressed in the ependymal layer lining the aqueductal system, and in astrocytes throughout the spinal cord and in selected regions of brain. MIWC was also expressed in a plasma membrane pattern in skeletal, but not smooth or cardiac muscle. Neither protein was expressed in small intestine, testis, liver, spleen and nerve. The tissue-specific expression of MIWC suggests a role in fluid transport and/or cell volume regulation in stomach and glandular epithelia. The functional role of MIWC expression in the neuromuscular system and of GLIP expression in skin and urinary bladder is uncertain. The specific cellular sites of MIWC expression (astrocytes, trachea, sarcolemma, gastric parietal cells and kidney principal cells) correspond exactly to sites where orthogonal arrays of particles (OAPs) have been visualized by freeze-fracture electron microscopy, suggesting that MIWC may be the OAP protein.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3