Cytokines modulate phagocytosis and intracellular digestion of collagen fibrils by fibroblasts in rabbit periosteal explants. Inverse effects on procollagenase production and collagen phagocytosis

Author:

van der Zee E.1,Everts V.1,Hoeben K.1,Beertsen W.1

Affiliation:

1. Department of Periodontology, Academic Centre for Dentistry Amsterdam, The Netherlands.

Abstract

Degradation of fibrillar collagen may occur in the extracellular space by enzymes, such as the metalloproteinase collagenase, or in the lysosomal apparatus of fibroblasts following phagocytosis. As the mechanisms involved in the regulation of the latter process are unknown, we investigated possible modulating effects of the cytokines epidermal growth factor (EGF), platelet-derived growth factor (PDGF), interleukin-1 alpha (IL-1 alpha) and transforming growth factor-beta (TGF-beta) on both collagen phagocytosis and the release of collagenase in an in vitro model employing periosteal tissue explants. The data demonstrated that the level of intracellular collagen digestion could be influenced by cytokines: IL-1 alpha inhibited and TGF-beta enhanced phagocytosis of fibrillar collagen by periosteal fibroblasts, whereas the cytokines had an opposite effect on the release of procollagenase. In combination, IL-1 alpha and TGF-beta proved to have an antagonizing effect on either parameter. PDGF and EGF had no effect on phagocytosis or collagenase release. The level of phagocytosed collagen correlated positively with the actual breakdown of collagen as assessed by the release of hydroxyproline but negatively with the level of released procollagenase. Our findings demonstrated that cytokines are able to modulate both the phagocytosis of collagen fibrils by fibroblasts and their subsequent intracellular breakdown, as well as the release of procollagenase, an enzyme considered crucial for extracellular collagenolysis. Moreover, our data show a negative correlation between these two parameters. It is concluded that IL-1 alpha, EGF and TGF-beta may be important in modulating the contribution of the intracellular and extracellular route of collagen breakdown.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3