Affiliation:
1. Department of Periodontology, Academic Centre for Dentistry Amsterdam, The Netherlands.
Abstract
Degradation of fibrillar collagen may occur in the extracellular space by enzymes, such as the metalloproteinase collagenase, or in the lysosomal apparatus of fibroblasts following phagocytosis. As the mechanisms involved in the regulation of the latter process are unknown, we investigated possible modulating effects of the cytokines epidermal growth factor (EGF), platelet-derived growth factor (PDGF), interleukin-1 alpha (IL-1 alpha) and transforming growth factor-beta (TGF-beta) on both collagen phagocytosis and the release of collagenase in an in vitro model employing periosteal tissue explants. The data demonstrated that the level of intracellular collagen digestion could be influenced by cytokines: IL-1 alpha inhibited and TGF-beta enhanced phagocytosis of fibrillar collagen by periosteal fibroblasts, whereas the cytokines had an opposite effect on the release of procollagenase. In combination, IL-1 alpha and TGF-beta proved to have an antagonizing effect on either parameter. PDGF and EGF had no effect on phagocytosis or collagenase release. The level of phagocytosed collagen correlated positively with the actual breakdown of collagen as assessed by the release of hydroxyproline but negatively with the level of released procollagenase. Our findings demonstrated that cytokines are able to modulate both the phagocytosis of collagen fibrils by fibroblasts and their subsequent intracellular breakdown, as well as the release of procollagenase, an enzyme considered crucial for extracellular collagenolysis. Moreover, our data show a negative correlation between these two parameters. It is concluded that IL-1 alpha, EGF and TGF-beta may be important in modulating the contribution of the intracellular and extracellular route of collagen breakdown.
Publisher
The Company of Biologists
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献