Fast freeze-fixation/freeze-substitution reveals the secretory membranes of the gastric parietal cell as a network of helically coiled tubule. A new model for parietal cell transformation

Author:

Pettitt J.M.1,Humphris D.C.1,Barrett S.P.1,Toh B.H.1,van Driel I.R.1,Gleeson P.A.1

Affiliation:

1. Department of Pathology and Immunology, Monash University Medical School, Prahran, Victoria, Australia.

Abstract

The parietal cell of the gastric mucosa undergoes rapid morphological transformation when it is stimulated to produce hydrochloric acid. In chemically fixed cells, this process is seen as a reduction in number of cytoplasmic ‘tubulovesicles’ as the apical surface of the cell progressively invaginates to increase the secretory surface area. It is widely believed that the tubulovesicles represent stored secretory membrane in the cytoplasm of the unstimulated cell, which is incorporated into the apical membrane upon stimulation, because they share H+,K+-ATPase activity with the apical membrane. However, fusion of tubulovesicles with the apical membrane concomitant with parietal cell activation has never been convincingly demonstrated. We have used fast freeze-fixation and freeze-substitution to study stages of morphological transformation in these cells. Tubulovesicles were not seen in the cytoplasm of any of our cryoprepared cells. Instead, the cytoplasm of the unstimulated cell contained numerous and densely packed helical coils of tubule, each having an axial core of cytoplasm. The helical coils were linked together by connecting tubules, lengths of relatively straight tubule. Lengths of straight connecting tubule also extended from coils lying adjacent to the apical and canalicular surfaces and ended at the apical and canaliculus membranes. Immunogold labelling with alpha- and beta-subunit-specific antibodies showed that the gastric H+,K+-ATPase was localized to the membranes of this tubular system, which therefore represented the configuration of the secretory membrane in the cytoplasm of the unstimulated parietal cell. Stimulation of the cells with histamine and isobutylmethylxanthine lead to modification of the tubular membrane system, correlated with progressive invagination of the apical membrane. The volume of the tubule lumen increased and, as this occurred, the tight spiral twist of the helical coils was lost, indicating that tubule distension was accounted for by partial unwinding. This exposed the cores of cytoplasm in the axes of the coils as rod-shaped elements of a three-dimensional reticulum, resembling a series of microvilli in random thin sections. Conversely, treatment with the H2 antagonist cimetidine caused severe contraction of the tubular membrane system and intracellular canaliculi. Our results indicate that tubulovesicles are an artifact of chemical fixation; consequently, they cannot have a role in parietal cell transformation. From our findings we propose an alternative model for morphological transformation in the parietal cell. This model predicts cytoskeleton-mediated control over expansion and contraction of the tubular membrane network revealed by cryopreparation. The model is compatible with the localization of cytoskeletal components in these cells.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3