Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes

Author:

Kolettas E.1,Buluwela L.1,Bayliss M.T.1,Muir H.I.1

Affiliation:

1. Department of Biochemistry, Charing Cross and Westminster Medical School, University of London, UK.

Abstract

Normal human adult articular chondrocytes were used to determine how the chondrocyte phenotype is modulated by culture conditions following long-term culture. We report here for the first time that human articular chondrocytes have a lifespan in the range of 34–37 population doublings. While chondrocytes cultured as monolayers displayed a fibroblastoid morphology and grew faster, those cultured as suspensions over agarose adopted a round morphology and formed clusters of cells reminiscent of chondrocyte differentiation in intact cartilage, with little or no DNA synthesis. These morphologies were independent of the age of the culture. Despite, these morphological differences, however, chondrocytes expressed markers at mRNA and protein levels characteristic of cartilage: namely, types II and IX collagens and the large aggregating proteoglycans, aggrecan, versican and link protein, but not syndecan, under both culture conditions. However, they also expressed type I collagen alpha 1(I) and alpha 2(I) chains. It has been suggested that expression of collagen alpha 1(I) by chondrocytes cultured as monolayers is a marker of the loss of the chondrocyte phenotype. However, we show here, using reverse transcriptase/polymerase chain reaction, that normal fresh intact human articular cartilage expresses collagen alpha 1(I). The data show that following long-term culture human articular chondrocytes retain their differentiated characteristics and that cell shape does not correlate with the expression of the chondrocyte phenotype. It is proposed that loss of the chondrocyte phenotype is marked by the loss of one or more cartilage-specific molecules rather than by the appearance of non-cartilage-specific molecules.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3