Bordetella bronchiseptica dermonecrotizing toxin stimulates assembly of actin stress fibers and focal adhesions by modifying the small GTP-binding protein rho

Author:

Horiguchi Y.1,Senda T.1,Sugimoto N.1,Katahira J.1,Matsuda M.1

Affiliation:

1. Department of Bacterial Toxinology, Osaka University, Japan.

Abstract

We studied the biochemical mechanism of morphological changes in cells treated with Bordetella dermonecrotizing toxin (DNT). DNT caused the morphological changes of serum-starved MC3T3-E1 cells from flat shapes to reflactile ones. These changes were accompanied by the assembly of actin stress fibers and focal adhesions, which is known to be regulated by the small GTP-binding protein rho. Clostridium botulinum C3 exoenzyme, which ADP-ribosylates and inactivates rho protein, ‘rounded’ the cells within 2 hours after addition to the extracellular fluid and their rounded shapes were maintained for at least 10 hours. However, when the cells were co-treated with C3 exoenzyme and DNT, they were rounded at 2 hours but recovered an apparently intact morphology after 3–8 hours of incubation. rho proteins in lysates from DNT-treated cells and untreated cells were radiolabeled by [32P]ADP-ribosylation with C3 exoenzyme and analyzed by SDS-polyacrylamide gel electrophoresis. Whereas the lysate from untreated cells showed a single band of [32P]ADP-ribosylated rho protein, the lysate from DNT-treated cells showed an additional two bands as well as the band identical to that of the lysate from untreated cells. Recombinant rhoA protein treated with DNT in vitro also showed a mobility shift in SDS-polyacrylamide gel electrophoresis. These results indicate that DNT causes the assembly of actin stress fibers and focal adhesions by directly modifying rho protein.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3