Contractile recovery from acidosis in toad ventricle is independent of intracellular pH and relies upon Ca2+ influx

Author:

Salas Margarita A.1,Vila-Petroff Martín G.1,Venosa Roque A.1,Mattiazzi Alicia1

Affiliation:

1. Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata,Argentina

Abstract

SUMMARYHypercapnic acidosis produces a negative inotropic effect on myocardial contractility followed by a partial recovery that occurs in spite of the persistent extracellular acidosis. The underlying mechanisms of this recovery are far from understood, especially in those species in which excitation–contraction coupling differs from that of the mammalian heart. The main goal of the present experiments was to obtain a better understanding of these mechanisms in the toad heart. Hypercapnic acidosis,induced by switching from a bicarbonate-buffered solution equilibrated with 5%CO2 to the same solution equilibrated with 12% CO2,evoked a decrease in contractility followed by a recovery that reached values higher than controls after 30 min of continued acidosis. This contractile pattern was associated with an initial decrease in intracellular pH(pHi) that recovered to control values in spite of the persistent extracellular acidosis. Blockade of the Na+/H+ exchanger(NHE) with cariporide (5 μmol l–1) produced a complete inhibition of pHi restitution, without affecting the mechanical recovery. Hypercapnic acidosis also produced a gradual increase of diastolic and peak Ca2+i transient values, which occurred immediately after the acidosis was settled and persisted during the mechanical recovery phase. Inhibition of Ca2+ influx through the reverse mode of the Na+/Ca2+ exchanger (NCX) by KB-R (1 μmol l–1 for myocytes and 20 μmol l–1 for ventricular strips), or of L-type Ca2+ channels by nifedipine (0.5μmol l–1), completely abolished the mechanical recovery. Acidosis also produced an increase in the action potential duration. This prolongation persisted throughout the acidosis period. Our results show that in toad ventricular myocardium, acidosis produces a decrease in contractility,due to a decrease in Ca2+ myofilament responsiveness, followed by a contractile recovery, which is independent of pHi recovery and relies on an increase in the influx of Ca2+. The results further indicate that both the reverse mode NCX and the L-type Ca2+channels, appear to be involved in the increase in intracellular Ca2+ concentration that mediates the contractile recovery from acidosis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3