Specification of the C. elegans MS blastomere by the T-box factor TBX-35

Author:

Broitman-Maduro Gina1,Lin Katy Tan-Hui12,Hung Wendy W. K.12,Maduro Morris F.1

Affiliation:

1. Department of Biology, University of California, Riverside, Riverside, CA 92521, USA.

2. Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA.

Abstract

In C. elegans, many mesodermal cell types are made by descendants of the progenitor MS, born at the seven-cell stage of embryonic development. Descendants of MS contribute to body wall muscle and to the posterior half of the pharynx. We have previously shown that MS is specified by the activity of the divergent MED-1,2 GATA factors. We report that the MED-1,2 target gene tbx-35, which encodes a T-box transcription factor, specifies the MS fate. Embryos homozygous for a putative tbx-35-null mutation fail to generate MS-derived pharynx and body muscle, and instead generate ectopic PAL-1-dependent muscle and hypodermis, tissues normally made by the C blastomere. Conversely, overexpression of tbx-35 results in the generation of ectopic pharynx and muscle tissue. The MS and E sister cells are made different by transduction of a Wnt/MAPK/Src pathway signal through the nuclear effector TCF/POP-1. We show that in E, tbx-35 is repressed in a Wnt-dependent manner that does not require activity of TCF/POP-1, suggesting that an additional nuclear Wnt effector functions in E to repress MS development. Genes of the T-box family are known to function in protostomes and deuterostomes in the specification of mesodermal fates. Our results show that this role has been evolutionarily conserved in the early C. elegans embryo, and that a progenitor of multiple tissue types can be specified by a surprisingly simple gene cascade.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3