Mechanisms underlying rhythmic locomotion: dynamics of muscle activation

Author:

Chen Jun1,Tian Jianghong1,Iwasaki Tetsuya2,Friesen W. Otto3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA

2. Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA

3. Department of Biology, University of Virginia, Charlottesville, VA 22904, USA

Abstract

SUMMARYWe have studied the dynamical properties of tension development in leech longitudinal muscle during swimming. A new method is proposed for modeling muscle properties under functionally relevant conditions where the muscle is subjected to both periodic activation and rhythmic length changes. The ‘dual-sinusoid’ experiments were conducted on preparations of leech nerve cord and body wall. The longitudinal muscle was activated periodically by injection of sinusoidal currents into an identified motoneuron. Simultaneously, sinusoidal length changes were imposed on the body wall with prescribed phase differences (12 values equally spaced over 2π radians) with respect to the current injection. Through the singular value decomposition of appropriately constructed tension data matrices, the leech muscle was found to have a multiplicative structure in which the tension was expressed as the product of activation and length factors. The time courses of activation and length factors were determined from the tension data and were used to develop component models. The proposed modeling method is a general one and is applicable to contractile elements for which the effects of series elasticity are negligible.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3