Development of animal models for schizophrenia

Author:

Arguello P. Alexander1,Markx Sander2,Gogos Joseph A.13,Karayiorgou Maria2

Affiliation:

1. Departments of Neuroscience

2. Psychiatry, and

3. Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA

Abstract

Schizophrenia is a devastating psychiatric disorder that affects around 1% of the population worldwide. The disease is characterized by ‘positive symptoms’, ‘negative symptoms’ and cognitive deficits. Over the last 60 years, a large number of family, twin and adoption studies have clearly demonstrated a strong genetic component for schizophrenia, but the mode of inheritance of the disease is complex and, in all likelihood, involves contribution from multiple genes in conjunction with environmental and stochastic factors. Recently, several genome-wide scans have demonstrated that rare alleles contribute significantly to schizophrenia risk. Assessments of rare variants have identified specific and probably causative, disease-associated structural mutations or copy number variants (CNVs, which result from genomic gains or losses). The fact that the effects of such lesions are transparent allows the generation of etiologically valid animal models and the opportunity to explore the molecular, cellular and circuit-level abnormalities underlying the expression of psychopathology. To date, the most common genomic structural rearrangements that are unequivocally associated with the development of schizophrenia, are de novo microdeletions of the 22q11.2 locus. Fortunately, the human 22q11.2 locus is conserved within the syntenic region of mouse chromosome 16, which harbors nearly all orthologues of the human genes. This has made it possible to engineer genetically faithful, and thus etiologically valid, animal models of this schizophrenia susceptibility locus.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3