BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling
Author:
Pajni-Underwood Sangeeta1, Wilson Catherine P.1, Elder Cindy2, Mishina Yuji3, Lewandoski Mark1
Affiliation:
1. Laboratory of Cancer and Developmental Biology National Institutes of Health,Frederick, MD 21702, USA. 2. SAIC, NCI-Frederick, National Institutes of Health, Frederick, MD 21702,USA. 3. Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
Abstract
In vertebrate limbs that lack webbing, the embryonic interdigit region is removed by programmed cell death (PCD). Established models suggest that bone morphogenetic proteins (BMPs) directly trigger such PCD, although no direct genetic evidence exists for this. Alternatively, BMPs might indirectly affect PCD by regulating fibroblast growth factors (FGFs), which act as cell survival factors. Here, we inactivated the mouse BMP receptor gene Bmpr1aspecifically in the limb bud apical ectodermal ridge (AER), a source of FGF activity. Early inactivation completely prevents AER formation. However,inactivation after limb bud initiation causes an upregulation of two AER-FGFs, Fgf4 and Fgf8, and a loss of interdigital PCD leading to webbed limbs. To determine whether excess FGF signaling inhibits interdigit PCD in these Bmpr1a mutant limbs, we performed double and triple AER-specific inactivations of Bmpr1a, Fgf4 and Fgf8. Webbing persists in AER-specific inactivations of Bmpr1a and Fgf8owing to elevated Fgf4 expression. Inactivation of Bmpr1a,Fgf8 and one copy of Fgf4 eliminates webbing. We conclude that during normal embryogenesis, BMP signaling to the AER indirectly regulates interdigit PCD by regulating AER-FGFs, which act as survival factors for the interdigit mesenchyme.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Reference90 articles.
1. Adamska, M., MacDonald, B. T. and Meisler, M. H.(2003). Doubleridge, a mouse mutant with defective compaction of the apical ectodermal ridge and normal dorsal-ventral patterning of the limb. Dev. Biol.255,350-362. 2. Ahn, K., Mishina, Y., Hanks, M. C., Behringer, R. R. and Crenshaw, E. B., 3rd (2001). BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development128,4449-4461. 3. Barrow, J. R., Thomas, K. R., Boussadia-Zahui, O., Moore, R.,Kemler, R., Capecchi, M. R. and McMahon, A. P. (2003). Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev.17,394-409. 4. Boulet, A. M., Moon, A. M., Arenkiel, B. R. and Capecchi, M. R. (2004). The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev. Biol.273,361-372. 5. Buckland, R. A., Collinson, J. M., Graham, E., Davidson, D. R. and Hill, R. E. (1998). Antagonistic effects of FGF4 on BMP induction of apoptosis and chondrogenesis in the chick limb bud. Mech. Dev.71,143-150.
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|