Endosomal system of Paramecium: coated pits to early endosomes

Author:

Allen R.D.1,Schroeder C.C.1,Fok A.K.1

Affiliation:

1. Pacific Biomedical Research Center, University of Hawaii, Honolulu 96822.

Abstract

A detailed morphological and tracer study of endocytosis via coated pits in Paramecium multimicronucleatum was undertaken to compare endocytic processes in a free-living protozoon with similar processes in higher organisms. Permanent pits at the cell surface enlarge, become coated and give rise to coated vesicles (188 +/− 41 nm in diameter) that enclose fluid-phase markers such as horseradish peroxidase (HRP). Both the pits and vesicles are labeled by the immunogold technique when a monoclonal antibody (mAb) raised against the plasma membrane of this cell is applied to cryosections. The HRP is delivered to an early endosome compartment, which also shares the plasma membrane antigen. The early endosome, as shown in quick-freeze deep-etch replicas of chemically unfixed cells, is a definitive non-reticular compartment composed of many individual flattened cisternal units of 0.2 to 0.7 microns diameter, each potentially bearing one or more approximately 80-nm-wide coated evaginations. These coated evaginations on the early endosomes contain HRP but are not labeled by the mAb. The coated evaginations pinch off to form a second group of coated vesicles (90 +/− 17 nm in diameter), which can be differentiated from those formed from coated pits by their smaller size, absence of plasma membrane antigen and their location somewhat deeper into the cytoplasm. This study shows a striking similarity between protozoons and mammalian cells in their overall early endosomal machinery and in the ability of early endosomes to sort cargo from plasma membrane components. The vesicles identified in this study form two distinct populations of putative shuttle vesicles, pre-endosomal (large) and early endosome-derived vesicles (small), which facilitate incoming and outgoing traffic from the early endosomes.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Memoriam: Richard Dean Allen;Journal of Eukaryotic Microbiology;2023-04-16

2. Evolutionary bioenergetics of ciliates;Journal of Eukaryotic Microbiology;2022-07-28

3. Membrane traffic and Ca 2+ signals in ciliates;Journal of Eukaryotic Microbiology;2022-03-07

4. Association of Paramecium bursaria Chlorella viruses with Paramecium bursaria cells: Ultrastructural studies;European Journal of Protistology;2012-05

5. The ciliary pocket: a once-forgotten membrane domain at the base of cilia;Biology of the Cell;2011-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3