Affiliation:
1. Department of Biological Science, Florida State University, Tallahassee 32306.
Abstract
Ascaris sperm are amoeboid cells that crawl by extending pseudopods. Although amoeboid motility is generally mediated through an actin-based cytoskeleton, Ascaris sperm lack this system. Instead, their major sperm protein (MSP) forms an extensive filament system that appears to fulfil this function. Because their motility appears to be essentially the same as that of their actin-rich counterparts, Ascaris sperm offer a simple alternative system for investigation of the molecular mechanism of amoeboid movement. To examine the structure and composition of the cytoskeleton, we stabilized the extremely labile native MSP filaments by detergent lysis of sperm in the presence of either glutaraldehyde or polyethylene glycol (PEG). Biochemical analysis showed that the cytoskeleton contained two isoforms of MSP, designated alpha- and beta-, that we purified and sequenced. Both contain 126 amino acids and have an acetylated N-terminal alanine, but differ at four residues so that alpha-MSP is 142 Da larger and 0.6 pH unit more basic than beta-MSP. Neither isoform shares sequence homology with other cytoskeletal proteins. In ethanol, 2-methyl-2,4-pentanediol (MPD), and other water-miscible alcohols each isoform assembled into filaments 10 nm wide with a characteristic substructure repeating axially at 9 nm. These filaments were indistinguishable from native fibers isolated from detergent-lysed sperm. Pelleting assays indicated a critical concentration for assembly of 0.2 mM for both isoforms in 30% ethanol, but alpha-MSP formed filaments at lower solvent concentration than beta-MSP. When incubated in polyethylene glycol, both isoforms formed thin, needle-shaped crystals that appeared to be constructed from helical fibers, with a 9 nm axial repeat that matched that seen in isolated filaments. These crystals probably contained a parallel array of helical filaments, and may enable both the structure of MSP molecules and their mode of assembly into higher aggregates to be investigated to high resolution.
Publisher
The Company of Biologists
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献