Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C

Author:

Anderson C.M.1,Georgiou G.N.1,Morrison I.E.1,Stevenson G.V.1,Cherry R.J.1

Affiliation:

1. Department of Chemistry and Biological Chemistry, University of Essex, Colchester, UK.

Abstract

A fluorescence imaging system, based on using a cooled slow-scan CCD camera, has been developed for tracking receptors on the surfaces of living cells. The technique is applicable to receptors for particles such as lipoproteins and viruses that can be labeled with a few tens of fluorophores. The positions of single particles in each image are determined to within 25 nm by fitting the fluorescence distribution to a two-dimensional Gaussian function. This procedure also provides an accurate measure of intensity, which is used as a tag for automated tracking of particles from frame to frame. The method is applied to an investigation of the mobility of receptors for LDL and influenza virus particles on human dermal fibroblasts at 4 degrees C. In contrast to previous studies by FRAP (fluorescence recovery after photo-bleaching), it is found that receptors have a low but measurable mobility at 4 degrees C. Analysis of individual particle tracks indicates that whilst some receptors undergo random diffusion, others undergo directed motion (flow) or diffusion restricted to a domain. A procedure is proposed for subdividing receptors according to their different types of motion and hence determining their motional parameters. The finding that receptors are not completely immobilised at 4 degrees C is significant for studies of receptor distributions performed at this temperature.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3