Patterns of mitochondrial membrane remodeling parallel functional adaptations to thermal stress

Author:

Chung Dillon J.1ORCID,Sparagna Genevieve C.2,Chicco Adam J.3,Schulte Patricia M.1

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

2. Department of Medicine/Division of Cardiology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA

3. Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA

Abstract

ABSTRACT The effect of temperature on mitochondrial performance is thought to be partly due to its effect on mitochondrial membranes. Numerous studies have shown that thermal acclimation and adaptation can alter the amount of inner-mitochondrial membrane (IMM), but little is known about the capacity of organisms to modulate mitochondrial membrane composition. Using northern and southern subspecies of Atlantic killifish (Fundulus heteroclitus) that are locally adapted to different environmental temperatures, we assessed whether thermal acclimation altered liver mitochondrial respiratory capacity or the composition and amount of IMM. We measured changes in phospholipid headgroups and headgroup-specific fatty acid (FA) remodeling, and used respirometry to assess mitochondrial respiratory capacity. Acclimation to 5°C and 33°C altered mitochondrial respiratory capacity in both subspecies. Northern F. heteroclitus exhibited greater mitochondrial respiratory capacity across acclimation temperatures, consistent with previously observed subspecies differences in whole-organism aerobic metabolism. Mitochondrial phospholipids were altered following thermal acclimation, and the direction of these changes was largely consistent between subspecies. These effects were primarily driven by remodeling of specific phospholipid classes and were associated with shifts in metabolic phenotypes. There were also differences in membrane composition between subspecies that were driven largely by differences in phospholipid classes. Changes in respiratory capacity between subspecies and with acclimation were largely but not completely accounted for by alterations in the amount of IMM. Taken together, these results support a role for changes in liver mitochondrial function in the ectothermic response to thermal stress during both acclimation and adaptation, and implicate lipid remodeling as a mechanism contributing to these changes.

Funder

Natural Sciences and Engineering Research Council of Canada

Journal of Experimental Biology

U.S. Department of Agriculture

American Heart Association

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3