How parrots see their colours: novelty in the visual pigments of Platycercus elegans

Author:

Knott Ben12,Davies Wayne I. L.34,Carvalho Livia S.3,Berg Mathew L.12,Buchanan Katherine L.25,Bowmaker James K.3,Bennett Andrew T. D.12,Hunt David M.346

Affiliation:

1. Centre for Behavioural Biology, School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK

2. Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia

3. UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK

4. School of Animal Biology and UWA Oceans Institute, University of Western Australia, Perth, WA 6009, Australia

5. Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK

6. Lions Eye Institute, University of Western Australia, Perth, WA 6009, Australia

Abstract

SUMMARY Intraspecific differences in retinal physiology have been demonstrated in several vertebrate taxa and are often subject to adaptive evolution. Nonetheless, such differences are currently unknown in birds, despite variations in habitat, behaviour and visual stimuli that might influence spectral sensitivity. The parrot Platycercus elegans is a species complex with extreme plumage colour differences between (and sometimes within) subspecies, making it an ideal candidate for intraspecific differences in spectral sensitivity. Here, the visual pigments of P. elegans were fully characterised through molecular sequencing of five visual opsin genes and measurement of their absorbance spectra using microspectrophotometry. Three of the genes, LWS, SW1 and SWS2, encode for proteins similar to those found in other birds; however, both the RH1 and RH2 pigments had polypeptides with carboxyl termini of different lengths and unusual properties that are unknown previously for any vertebrate visual pigment. Specifically, multiple RH2 transcripts and protein variants (short, medium and long) were identified for the first time that are generated by alternative splicing of downstream coding and non-coding exons. Our work provides the first complete characterisation of the visual pigments of a parrot, perhaps the most colourful order of birds, and moreover suggests more variability in avian eyes than hitherto considered.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3