Affiliation:
1. Columbia University Department of Chemical Engineering , , New York, NY 10027 , USA
Abstract
ABSTRACT
In common with other actomyosin contractile cellular machineries, actin turnover is required for normal function of the cytokinetic contractile ring. Cofilin is an actin-binding protein contributing to turnover by severing actin filaments, required for cytokinesis by many organisms. In fission yeast cofilin mutants, contractile rings suffer bridging instabilities in which segments of the ring peel away from the plasma membrane, forming straight bridges whose ends remain attached to the membrane. The origin of bridging instability is unclear. Here, we used molecularly explicit simulations of contractile rings to examine the role of cofilin. Simulations reproduced the experimentally observed cycles of bridging and reassembly during constriction, and the occurrence of bridging in ring segments with low density of the myosin II protein Myo2. The lack of cofilin severing produced ∼2-fold longer filaments and, consequently, ∼2-fold higher ring tensions. Simulations identified bridging as originating in the boosted ring tension, which increased centripetal forces that detached actin from Myo2, which was anchoring actin to the membrane. Thus, cofilin serves a critical role in cytokinesis by providing protection from bridging, the principal structural threat to contractile rings.
Funder
National Institute of General Medical Sciences
National Institutes of Health
Publisher
The Company of Biologists
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Myosin turnover controls actomyosin contractile instability;Proceedings of the National Academy of Sciences;2022-10-20