The novel zebrafish model pretzel demonstrates a central role for SH3PXD2B in defective collagen remodelling and fibrosis in Frank-Ter Haar syndrome

Author:

de Vos Ivo J. H. M.1,Wong Arnette Shi Wei1,Taslim Jason1ORCID,Ong Sheena Li Ming2ORCID,Syder Nicole C.1,Goggi Julian L.34ORCID,Carney Thomas J.5ORCID,van Steensel Maurice A. M.15

Affiliation:

1. Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore

2. Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), 138648, Singapore

3. Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 138667, Singapore

4. Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 117593, Singapore

5. Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 636921, Singapore

Abstract

Frank-Ter Haar syndrome (FTHS, MIM #249420) is a rare skeletal dysplasia within the Defective Collagen Remodelling Spectrum (DECORS), which is characterised by craniofacial abnormalities, skeletal malformations and fibrotic soft tissues changes including dermal fibrosis and joint contractures. FTHS is caused by homozygous or compound heterozygous loss-of-function mutation or deletion of SH3PXD2B (Src homology 3 and Phox homology domain-containing protein 2B; MIM #613293). SH3PXD2B encodes an adaptor protein with the same name, which is required for full functionality of podosomes, specialised membrane structures involved in extracellular matrix (ECM) remodelling. The pathogenesis of DECORS is still incompletely understood and, as a result, therapeutic options are limited. We previously generated an mmp14a/b knockout zebrafish and demonstrated that it primarily mimics the DECORS-related bone abnormalities. Here, we present a novel sh3pxd2b mutant zebrafish, pretzel, which primarily reflects the DECORS-related dermal fibrosis and contractures. In addition to relatively mild skeletal abnormalities, pretzel mutants develop dermal and musculoskeletal fibrosis, contraction of which seems to underlie grotesque deformations that include kyphoscoliosis, abdominal constriction and lateral folding. The discrepancy in phenotypes between mmp14a/b and sh3pxd2b mutants suggests that in fish, as opposed to humans, there are differences in spatiotemporal dependence of ECM remodelling on either sh3pxd2b or mmp14a/b. The pretzel model presented here can be used to further delineate the underlying mechanism of the fibrosis observed in DECORS, as well as screening and subsequent development of novel drugs targeting DECORS-related fibrosis.

Funder

Biomedical Research Council A*STAR

Acne and Sebaceous Gland Program

A*STAR

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3