Sound production in the longnose butterflyfishes (genusForcipiger): cranial kinematics, muscle activity and honest signals

Author:

Boyle Kelly S.12,Tricas Timothy C.12

Affiliation:

1. Department of Zoology, University of Hawai'i at Manoa, Edmondson 152, 2538 McCarthy Mall, Honolulu, HI 96822, USA

2. Hawai'i Institute of Marine Biology, 46-007 Lilipuna Road, Kane'ohe, HI 96744, USA

Abstract

SUMMARYMany teleost fishes produce sounds for social communication with mechanisms that do not involve swim bladder musculature. Such sounds may reflect physical attributes of the sound-production mechanism, be constrained by body size and therefore control signal reliability during agonistic behaviors. We examined kinematics of the cranium, median fins and caudal peduncle during sound production in two territorial chaetodontid butterflyfish sister species: forcepsfish (Forcipiger flavissimus) and longnose butterflyfish (F. longirostris). During intraspecific agonistic encounters, both species emit a single pulse sound that precedes rapid cranial rotation at velocities and accelerations that exceed those of prey strikes by many ram-and suction-feeding fishes. Electromyography showed that onsets of activity for anterior epaxialis, sternohyoideus, A1 and A2 adductor mandibulae muscles and sound emission are coincident but precede cranial elevation. Observations indicate that sound production is driven by epaxial muscle contraction whereas a ventral linkage between the head and pectoral girdle is maintained by simultaneous activity from the adductor mandibulae and sternohyoideus. Thus, the girdle, ribs and rostral swim bladder are pulled anteriorly before the head is released and rotated dorsally. Predictions of the hypothesis that acoustic signals are indicators of body size and kinematic performance were confirmed. Variation in forcepsfish sound duration and sound pressure level is explained partly by cranial elevation velocity and epaxial electromyogram duration. Body size, however, explains most variation in duration and sound pressure level. These observed associations indicate that forcepsfish sounds may be accurate indicators of size and condition that are related to resource holding potential during social encounters.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3