Semaphorin 5B is a repellent cue for sensory afferents projecting into the developing spinal cord

Author:

Liu Rachel Q.123,Wang Wenyan3,Legg Arthur3,Abramyan John4,O'Connor Timothy P.123

Affiliation:

1. Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, CanadaV6T 1Z3

2. International Collaboration on Repair Discoveries, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, CanadaV5Z 1L7

3. Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, CanadaV6T 1Z3

4. Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, CanadaV6T 1Z3

Abstract

During vertebrate development, centrally projecting sensory axons of the dorsal root ganglia neurons first reach the embryonic spinal cord at the dorsolateral margin. Instead of immediately projecting into the grey matter, they bifurcate and extend rostrally and caudally to establish the longitudinal dorsal funiculus during a stereotyped waiting period of approximately 48 h. Collateral fibres then extend concurrently across multiple spinal segments and project to their appropriate targets within the grey matter. This rostrocaudal extension of sensory afferents is crucial for the intersegmental processing of information throughout the spinal cord. However, the precise cues that prevent premature entry during the waiting period remain to be identified. Here, we show that semaphorin 5B (Sema5B), a member of the semaphorin family of guidance molecules, is expressed in the chick spinal cord during this waiting period and dorsal funiculus formation. Sema5B expression is dynamic, with a reduction of expression apparent in the spinal cord concomitant with collateral extension. We show that Sema5B inhibits the growth of NGF-dependent sensory axons and that this effect is mediated in part through the cell adhesion molecule TAG-1. Knockdown of Sema5B in the spinal cord using RNA interference leads to the premature extension of cutaneous nociceptive axons into the dorsal horn grey matter. These premature projections predominantly occur at the site of dorsal root entry. Our results suggest that Sema5B contributes to a repulsive barrier for centrally projecting primary sensory axons, forcing them to turn and establish the dorsal funiculus.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3