The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors

Author:

Bolós Victoria1,Peinado Hector1,Pérez-Moreno Mirna A.12,Fraga Mario F.3,Esteller Manel3,Cano Amparo1

Affiliation:

1. Instituto de Investigaciones Biomédicas “Alberto Sols”(CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain

2. Present address: Laboratory of Mammalian Cell Biology and Development, The Rockefeller University. 1230 York Avenue, Box 300. New York, NY 10021,USA

3. Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro, 4, 28029 Madrid, Spain

Abstract

Transcriptional repression mechanisms have emerged as one of the crucial processes for the downregulation of E-cadherin expression during development and tumour progression. Recently, several E-cadherin transcriptional repressors have been characterized (Snail, E12/E47, ZEB-1 and SIP-1) and shown to act through an interaction with proximal E-boxes of the E-cadherin promoter. We have analyzed the participation of another member of the Snail family, Slug, and observed that it also behaves as a repressor of E-cadherin expression. Stable expression of Slug in MDCK cells leads to the full repression of E-cadherin at transcriptional level and triggers a complete epithelial to mesenchymal transition. Slug-induced repression of E-cadherin is mediated by its binding to proximal E-boxes, particularly to the E-pal element of the mouse promoter. Detailed analysis of the binding affinity of different repressors to the E-pal element indicates that Slug binds with lower affinity than Snail and E47 proteins. These results, together with the known expression patterns of these factors in embryonic development and carcinoma cell lines, support the idea that the in vivo action of the different factors in E-cadherinrepression can be modulated by their relative concentrations as well as by specific cellular or tumour contexts.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 987 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3