Neural basis of acoustic species recognition in a cryptic species complex

Author:

Gupta Saumya1ORCID,Alluri Rishi K.2ORCID,Rose Gary J.2ORCID,Bee Mark A.13ORCID

Affiliation:

1. Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA

2. School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA

3. Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA

Abstract

ABSTRACT Sexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals that are widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we tested the hypothesis that ICNs mediate acoustic species recognition by exploiting the known differences in temporal selectivity in two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor). We examined the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds closely matched the species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic treefrog species.

Funder

Carol H. and Wayne A. Pletcher

Alexander and Lydia Anderson

Department of Ecology, Evolution, and Behavior, University of Minnesota

National Institute on Deafness and Other Communication Disorders

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3