Compliant legs enable lizards to maintain high running speeds on complex terrains

Author:

Druelle François1ORCID,Goyens Jana1,Vasilopoulou-Kampitsi Menelia1,Aerts Peter12

Affiliation:

1. Laboratory for Functional Morphology, University of Antwerp, Belgium

2. Department of Sport Sciences, University of Ghent, Belgium

Abstract

Substrate variations are likely to compel animal performance in natural environments, as running over complex terrains challenges the dynamic stability of the body differently in each step. Yet, being able to negotiate complex terrains at top speed is a strong advantage for animals that have to deal with predators and evasive prey. Only little is known on how animals negotiate such terrain variability at high speed. We investigated this in fast running Acanthodactylus boskianus lizards, by measuring their 3D kinematics using four synchronized high-speed video cameras (325Hz) on an adaptable racetrack. This racetrack was covered with four different substrates, representing increasing levels of terrain complexity. We found that the lizards deal with this complexity gradient by gradually adopting more erect parasagittal leg postures. More erected legs enable, in turn, more compliant legs use which are highly adjustable on complex terrains. Additionally, the lizards stabilise their head, which facilitates vestibular and visual perception. Together, compliant legs and head stabilisation enable the lizards to minimise movements of the body centre of mass, even when running on highly irregular terrains. This suggests that the head and the centre of mass are the priority targets for running on uneven terrains. As a result, running performance (mean forward speed) decreases only slightly, and only on the most challenging substrate under investigation.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. Bipedalism in lizards: whole-body modelling reveals a possible spandrel;Aerts;Philos. Trans. R. Soc. Lond. B Biol. Sci.,2003

2. Energy-saving mechanisms in walking and running;Alexander;J. Exp. Biol.,1991

3. Tendon elasticity and muscle function;Alexander;Comp. Biochem. Physiol. A Mol. Integr. Physiol.,2002

4. Vestibular system: the many facets of a multimodal sense;Angelaki;Annu. Rev. Neurosci.,2008

5. Morphology, performance and fitness;Arnold;Am. Zool.,1983

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3