A new mechanism for the regulation of Gab1 recruitment to the plasma membrane

Author:

Eulenfeld René1,Schaper Fred1

Affiliation:

1. Department of Biochemistry, RWTH Aachen University, Aachen, Germany

Abstract

Adaptor proteins involved in signal transduction fulfil their cellular functions by bringing signalling molecules together and by targeting these signalling components to defined compartments within the cell. Furthermore, adaptor proteins represent a molecular platform from which different signalling pathways are initiated. Gab1 is an adaptor protein that recruits the p85 subunit of the phosphatidylinositol 3-kinase, the adaptor Grb2, the adaptor and phosphatase SHP2 and the GTPase-activating protein Ras-GAP. Gab1 thus contributes to the activation of the PI3K cascade and the MAPK cascade through many growth factors and cytokines. The recruitment of Gab1 to phosphatidylinositol (3,4,5)-trisphosphate within the plasma membrane by its pleckstrin-homology domain is regarded as a major regulatory step for the activation of Gab1. Here, we present a new more complex mechanism for Gab1 translocation that involves and depends on the activation of ERK. We demonstrate that the presence of PI3K activity in the cell is not sufficient for binding Gab1 to the plasma membrane. Instead, additional MAPK-dependent phosphorylation of Ser551 in Gab1 is crucial for the recruitment of Gab1 to the plasma membrane. This mechanism represents a new mode of regulation for the function of PH domains.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3