Evidence for the use of a high-resolution magnetic map by a short-distance migrant, the Alpine newt (Ichthyosaura alpestris)

Author:

Diego-Rasilla Francisco J.1ORCID,Phillips John B.2ORCID

Affiliation:

1. Departamento de Biología Animal, Universidad de Salamanca, 37007 Salamanca, Spain

2. Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0406, USA

Abstract

ABSTRACT Newts can use spatial variation in the magnetic field (MF) to derive geographic position, but it is unclear how they detect the ‘spatial signal’, which, over the distances that newts move in a day, is an order of magnitude lower than temporal variation in the MF. Previous work has shown that newts take map readings using their light-dependent magnetic compass to align a magnetite-based ‘map detector’ relative to the MF. In this study, time of day, location and light exposure (required by the magnetic compass) were varied to determine when newts obtain map information. Newts were displaced from breeding ponds without access to route-based cues to sites where they were held and/or tested under diffuse natural illumination. We found that: (1) newts held overnight at the testing site exhibited accurate homing orientation, but not if transported to the testing site on the day of testing; (2) newts held overnight under diffuse lighting at a ‘false testing site’ and then tested at a site located in a different direction from their home pond oriented in the home direction from the holding site, not from the site where they were tested; and (3) newts held overnight in total darkness (except for light exposure for specific periods) only exhibited homing orientation the following day if exposed to diffuse illumination during the preceding evening twilight in the ambient MF. These findings demonstrate that, to determine the home direction, newts require access to light and the ambient MF during evening twilight when temporal variation in the MF is minimal.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3