Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish

Author:

Liao W.1,Ho C.Y.1,Yan Y.L.1,Postlethwait J.1,Stainier D.Y.1

Affiliation:

1. Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California at San Francisco, San Francisco, CA 94143-0448, USA.

Abstract

During embryogenesis, endothelial and blood precursors are hypothesized to arise from a common progenitor, the hemangioblast. Several genes that affect the differentiation of, or are expressed early in, both the endothelial and blood lineages may in fact function at the level of the hemangioblast. For example, the zebrafish cloche mutation disrupts the differentiation of both endothelial and blood cells. The transcription factor gene scl is expressed in both endothelial and blood lineages from an early stage and can regulate their differentiation. Here we report that in zebrafish the homeobox gene hhex (previously called hex) is also expressed in endothelial and blood lineages from an early stage. We find that hhex expression in these lineages is significantly reduced in cloche mutant embryos, indicating that hhex functions downstream of cloche to regulate endothelial and blood differentiation. Ectopic expression of hhex through injection of a DNA construct leads to the premature and ectopic expression of early endothelial and blood differentiation genes such as fli1, flk1 and gata1, indicating that Hhex can positively regulate endothelial and blood differentiation. However, analysis of a hhex deficiency allele shows that hhex is not essential for early endothelial and blood differentiation, suggesting that another gene, perhaps scl, compensates for the absence of Hhex function. Furthermore, we find that hhex and scl can induce each other's expression, suggesting that these two genes cross-regulate each other during early endothelial and blood differentiation. Together, these data provide the initial framework of a pathway that can be used to further integrate the molecular events regulating hemangioblast differentiation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3