Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate

Author:

Hardcastle Z.1,Papalopulu N.1

Affiliation:

1. Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK.

Abstract

XBF-1 is an anterior neural plate-specific, winged helix transcription factor that affects neural development in a concentration-dependent manner. A high concentration of XBF-1 results in suppression of endogenous neuronal differentiation and an expansion of undifferentiated neuroectoderm. Here we investigate the mechanism by which this expansion is achieved. Our findings suggest that XBF-1 converts ectoderm to a neural fate and it does so independently of any effects on the mesoderm. In addition, we show that a high dose of XBF-1 promotes the proliferation of neuroectodermal cells while a low dose inhibits ectodermal proliferation. Thus, the neural expansion observed after high dose XBF-1 misexpression is due both to an increase in the number of ectodermal cells devoted to a neural fate and an increase in their proliferation. We show that the effect on cell proliferation is likely to be mediated by p27(XIC1), a cyclin-dependent kinase (cdk) inhibitor. We show that p27(XIC1) is expressed in a spatially restricted pattern in the embryo, including the anterior neural plate, and when misexpressed it is sufficient to block the cell cycle in vivo. We find that p27(XIC1)is transcriptionally regulated by XBF-1 in a dose-dependent manner such that it is suppressed or ectopically induced by a high or low dose of XBF-1, respectively. However, while a low dose of XBF-1 induces ectopic p27(XIC1)and ectopic neurons, misexpression of p27(XIC1)does not induce ectopic neurons, suggesting that the effects of XBF-1 on cell fate and cell proliferation are distinct. Finally, we show that p27(XIC1)is suppressed by XBF-1 in the absence of protein synthesis, suggesting that at least one component of p27(XIC1)regulation by XBF-1 may be direct. Thus, XBF-1 is a neural-specific transcription factor that can independently affect both the cell fate choice and the proliferative status of the cells in which it is expressed.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3