Affiliation:
1. Department of Anatomy and Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0452, USA.
Abstract
The mechanisms by which pluripotent embryonic cells generate unipotent tissue progenitor cells during development are unknown. Molecular/genetic experiments in cultured cells have led to the hypothesis that the product of a single member of the MyoD gene family (MDF) is necessary and sufficient to establish the positive aspects of the determined state of myogenic precursor cells: i.e., the ability to initiate and maintain the differentiated state (Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T. K., Turner, D., Rupp, R., Hollenberg, S. et al. (1991) Science 251, 761–766). Embryonic cell type determination also involves negative regulation, such as the restriction of developmental potential for alternative cell types, that is not directly addressed by the MDF model. In the experiments reported here, phenotypic restriction in myogenic precursor cells is assayed by an in vivo ‘notochord challenge’ to evaluate their potential to ‘choose’ between two alternative cell fate endpoints: cartilage and muscle (Williams, B. A. and Ordahl, C. P. (1997) Development 124, 4983–4997). Two separate myogenic precursor cell populations were found to be phenotypically restricted while expressing the Pax3 gene and prior to MDF gene activation. Therefore, while MDF family members act positively during myogenic differentiation, phenotypic restriction, the negative aspect of cell specification, requires cellular and molecular events and interactions that precede MDF expression in myogenic precursor cells. The qualities of muscle formed by the determined myogenic precursor cells in these experiments further indicate that their developmental potential is intermediate between that of myoblastic stem cells taken from fetal or adult tissue (which lack mitotic and morphogenetic potential when tested in vivo) and embryonic stem cells (which are multipotent). We hypothesize that such embryonic myogenic progenitor cells represent a distinct class of determined embryonic cell, one that is responsible for both tissue growth and tissue morphogenesis.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献