Fork head prevents apoptosis and promotes cell shape change during formation of the Drosophila salivary glands

Author:

Myat M.M.1,Andrew D.J.1

Affiliation:

1. Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA.

Abstract

The secretory tubes of the Drosophila salivary glands are formed by the regulated, sequential internalization of the primordia. Secretory cell invagination occurs by a change in cell shape that includes basal nuclear migration and apical membrane constriction. In embryos mutant for fork head (fkh), which encodes a transcription factor homologous to mammalian hepatocyte nuclear factor 3beta (HNF-3beta), the secretory primordia are not internalized and secretory tubes do not form. Here, we show that secretory cells of fkh mutant embryos undergo extensive apoptotic cell death following the elevated expression of the apoptotic activator genes, reaper and head involution defective. We rescue the secretory cell death in the fkh mutants and show that the rescued cells still do not invaginate. The rescued fkh secretory cells undergo basal nuclear migration in the same spatial and temporal pattern as in wild-type secretory cells, but do not constrict their apical surface membranes. Our findings suggest at least two roles for fkh in formation of the embryonic salivary glands: an early role in promoting survival of the secretory cells, and a later role in secretory cell invagination, specifically in the constriction of the apical surface membrane.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3