A role for the DP subunit of the E2F transcription factor in axis determination during Drosophila oogenesis

Author:

Myster D.L.1,Bonnette P.C.1,Duronio R.J.1

Affiliation:

1. Department of Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.

Abstract

The E2F family of transcription factors contributes to cell cycle control by regulating the transcription of DNA replication factors. Functional ‘E2F’ is a DNA-binding heterodimer composed of E2F and DP proteins. Drosophila contains two E2F genes (dE2F, dE2F2) and one DP gene (dDP). Mutation of either dE2F or dDP eliminates G(1)-S transcription of known replication factors during embryogenesis and compromises DNA replication. However, the analysis of these mutant phenotypes is complicated by the perdurance of maternally supplied gene function. To address this and to further analyze the role of E2F transcription factors in development we have phenotypically characterized mitotic clones of dDP mutant cells in the female germline. Our analysis indicates that dDP is required for several essential processes during oogenesis. In a fraction of the mutant egg chambers the germ cells execute one extra round of mitosis, suggesting that in this tissue dDP is uniquely utilized for cell cycle arrest rather than cell cycle progression. Mutation of dDP in the germline also prevents nurse cell cytoplasm transfer to the oocyte, resulting in a ‘dumpless’ phenotype that blocks oocyte development. This phenotype likely results from both disruption of the actin cytoskeleton and a failure of nurse cell apoptosis, each of which are required for normal cytoplasmic transfer. Lastly, we found that dDP is required for the establishment of the dorsal-ventral axis, as loss of dDP function prevents the localized expression of the EGFR ligand Gurken in the oocyte, which initiates dorsal-ventral polarity in the egg chamber. Thus we have uncovered new functions for E2F transcription factors during development, including an unexpected role in pattern formation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3