Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension

Author:

Kwong W.Y.1,Wild A.E.1,Roberts P.1,Willis A.C.1,Fleming T.P.1

Affiliation:

1. Division of Cell Sciences, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.

Abstract

Epidemiological studies have indicated that susceptibility of human adults to hypertension and cardiovascular disease may result from intrauterine growth restriction and low birth weight induced by maternal undernutrition. Although the ‘foetal origins of adult disease’ hypothesis has significant relevance to preventative healthcare, the origin and biological mechanisms of foetal programming are largely unknown. Here, we investigate the origin, embryonic phenotype and potential maternal mechanisms of programming within an established rat model. Maternal low protein diet (LPD) fed during only the preimplantation period of development (0-4.25 days after mating), before return to control diet for the remainder of gestation, induced programming of altered birthweight, postnatal growth rate, hypertension and organ/body-weight ratios in either male or female offspring at up to 12 weeks of age. Preimplantation embryos collected from dams after 0–4.25 days of maternal LPD displayed significantly reduced cell numbers, first within the inner cell mass (ICM; early blastocyst), and later within both ICM and trophectoderm lineages (mid/late blastocyst), apparently induced by a slower rate of cellular proliferation rather than by increased apoptosis. The LPD regimen significantly reduced insulin and essential amino acid levels, and increased glucose levels within maternal serum by day 4 of development. Our data indicate that long-term programming of postnatal growth and physiology can be induced irreversibly during the preimplantation period of development by maternal protein undernutrition. Further, we propose that the mildly hyperglycaemic and amino acid-depleted maternal environment generated by undernutrition may act as an early mechanism of programming and initiate conditions of ‘metabolic stress’, restricting early embryonic proliferation and the generation of appropriately sized stem-cell lineages.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3